

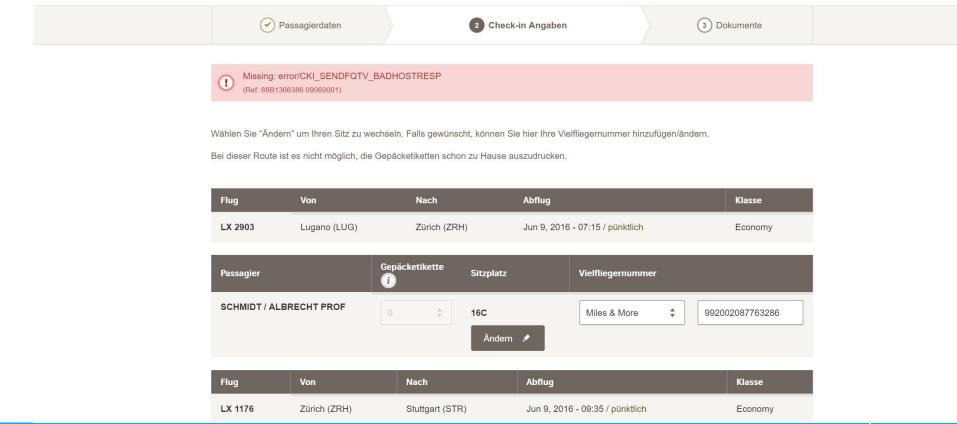
Learning Goals

- Understand ...
 - When and how errors should be communicated
 - How human error and design are not independent
 - The difference between mistakes and slips
 - The concept of constraints and how they can help to reduce errors
- Be able to ...
 - explain the assumptions that are made about what errors users make
 - discuss different types of slips and give examples
 - Discuss how a user interface designs can be improved to prevent errors

Communicating Systems Errors

- What to do, if an error in the system occurs?
- Will the user benefit from knowing about the error?
- Can the user do something about the error?
- What other solutions are available?
- If the error is provided to the user it must be
 - Understandable (the user gets what the problem is)
 - Actionable (the user gets options to do things)


```
public final int STARTSTOP = 05;
public final int BACK = 05;
public final int FORWARD = 06;
public final int integer number too large: 08
public final int DECREASE = 08;
```


Communicating Systems Errors

Swiss International Air Lines AG [CH] https://checkin.swiss.com/ck.fly?locale=de&first_name1=Albrecht&last_name1=Schmidt&departure_port=LUG&departure_date=2016/06/09&flight_number=2903&carrier=LX

BLPFabrizio Montesi

DEUTSCH .

Communicating Systems Errors

DEUTSCH > SWISS Online Check-in 2 Check-in Angaben Missing: error/CKI_SENDFQTV_BADHOSTRESP (Ref: 88B1366386 09060001) LX 1176

Who's fault is it, if an accident happens

Human Error as the Ultimate Explanation?

Deadly crash on German monorail

Twenty-three people died and 10 were injured when an elevated magnetic train ploughed into a maintenance vehicle in north-western Germany.

The train, which floats on a monorail via a magnetic levitation system called maglev, was going at nearly 200km/h (120 mph) when it crashed near Lathen.

Rescuers had to use ladders and cranes to reach the train

[...]

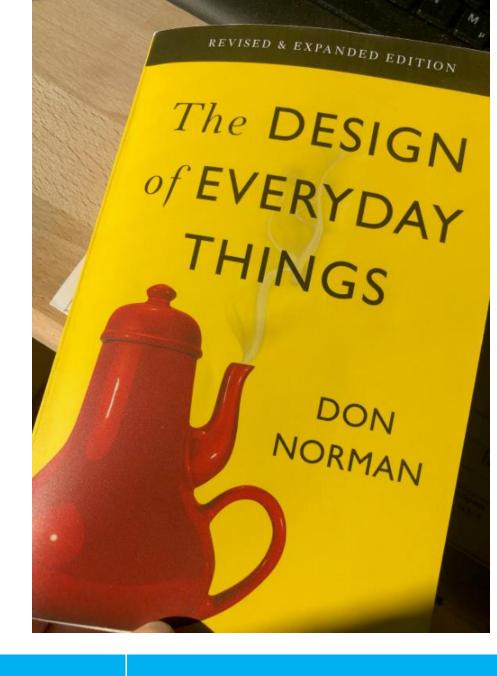
'Human error'

The maintenance vehicle hit by the train had two crew members.

A spokesman for IABG, the company which operates the train, said the accident had been caused by human error, rather than a technical fault.

http://news.bbc.co.uk/1/hi/world/europe/5370564.stm

Bei der Analyse der Unfallursachen stützt sich der Bericht laut «Nordwest-Zeitung» auf zwei Gutachten zu dem Unglück:


Nach Ansicht der Gutachter verstieß der Fahrdienstleiter gegen die Betriebsvorschriften, weil er die elektronische Streckensperre nicht setzte. Als weitere Ursache wird die Missachtung des Vier-Augen-Prinzips im Leitstand der Teststrecke genannt.

http://www.netzeitung.de/politik/deutschland/720674.html

About (Human) Errors...

... and implications for user interface design

- "If an error is possible, someone will make it" (Norman)
- "Human Error" are a starting point to look for design problems.

About (Human) Errors...

... and implications for user interface design

- Design implications
 - Assume all possible errors will be made
 - Minimize the chance to make errors (constraints)
 - Minimize the effect that errors have (is difficult!)
 - Include mechanism to detect errors
 - Attempt to make actions reversible
- Prevent that users make errors in the first place
 - Make it impossible to enter wrong commands
 - Ensure that users can always recover

Shneiderman, B., Plaisant, C., Cohen, M., Jacobs, S., Elmqvist, N., & Diakopoulos, N. (2016). Designing the user interface: strategies for effective human-computer interaction. Pearson. http://www.cs.umd.edu/hcil/DTUI6/

Understanding Errors

- Errors are routinely made
 - Communication and language is used between people to clarify – more often than one imagines
 - Common understanding of goals and intentions between people helps to overcome errors
- Two fundamental categories
 - Mistakes = wrong goal
 - overgeneralization
 - wrong conclusions
 - Slips = right goal but wrong action
 - Result of "automatic" behaviour
 - Appropriate goal but performance/action is wrong

Norman, D. A. (2013). The design of everyday things: Revised and expanded edition. New York: Doubleday.

University of Stuttgart 10

Understanding Errors

- Errors are routinely made
 - Communication and language is used between people to clarify – more often than one imagines
 - Common understanding of goals and intentions between people helps to overcome errors
- Two fundamental categories
 - Mistakes = wrong goal
 - overgeneralization
 - wrong conclusions
 - Slips = right goal but wrong action
 - Result of "automatic" behaviour
 - Appropriate goal but performance/action is wrong

Understanding the types of Slips Users Make

- Capture errors
- Description errors
- Data driven errors
- Associate action errors
- Loss-of-Activation error ~ forgetting
- Mode error

Capture errors

Understanding the types of Slips Users Make

- Capture errors
 - Two actions with common start point, the more familiar one captures the unusual (driving to work on Saturday instead of the supermarket)
- Description errors
- Data driven errors
- Associate action errors
- Loss-of-Activation error ~ forgetting
- Mode error

Description errors

Understanding the types of Slips Users Make

- Capture errors
- Description errors
 - Performing an action that is close to the action that one wanted to perform (putting the cutlery in the bin instead of the sink)
- Data driven errors
- Associate action errors
- Loss-of-Activation error ~ forgetting
- Mode error

Description errors - Example

Understanding the types of Slips Users Make

- Related to Gestalt theory
- Example Car
 - Different openings for fluids, e.g. oil, water, break, ...
 - Openings differ in
 - Size
 - Position
 - Mechanism to open
 - Color
- Design recommendations
 - Make controls for different actions look different

print save send off

print save send off

Data driven errors

Understanding the types of Slips Users Make

- Capture errors
- Description errors
- Data driven errors
 - Using data that is visible in a particular moment instead of the data that is well-known (calling the room number you see instead of the phone number you know by heart)
- Associate action errors
- Loss-of-Activation error ~ forgetting
- Mode error

Associate action errors

Understanding the types of Slips Users Make

- Capture errors
- Description errors
- Data driven errors
- Associate action errors
 - You think of something and that influences your action. (e.g. saying come in after picking up the phone)
- Loss-of-Activation error ~ forgetting
- Mode error

Loss-of-Activation error ~ forgetting

Understanding the types of Slips Users Make

- Capture errors
- Description errors
- Data driven errors
- Associate action errors
- Loss-of-Activation error ~ forgetting
 - In a given environment you decided to do something but when leaving then you forgot what you wanted to do. Going back to the start place you remember.
- Mode error

Mode error

Understanding the types of Slips Users Make

- Capture errors
- Description errors
- Data driven errors
- Associate action errors
- Loss-of-Activation error ~ forgetting
- Mode error
 - You forget that you are in a mode that does not allow a certain action or where a action has a different effect

Mode error - Example

Understanding the types of Slips Users Make

- Why use modes in the first place?
 - User interface trade-off, e.g.
 - number of buttons needed can be reduced
- Design recommendations
 - Minimize number of modes
 - Make modes always visible
- Example alarm clock
 - Mode vs. mode free
 - Visualization of mode
- What is your solution?
 - Draw the control elements
 - Provide labels

Setting time and alarm with mode?

Setting time and alarm without mode?

Correcting Errors

Actions on different level

- If something goes wrong, we attempt corrections on the lowest level
- A task includes action on different levels
 - Drive to University
 - Get into the car
 - Open the car door
 - Insert car key and turn
 - Apply pressure to the key

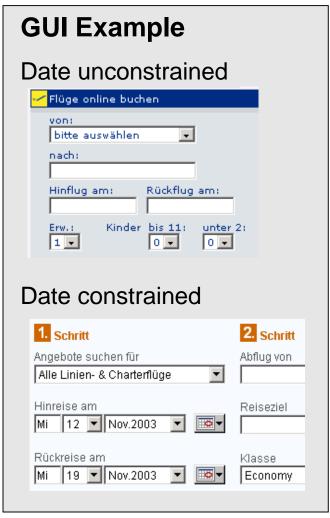
• ...

Preventing Errors

Confirmation is unlikely to prevent Errors

- Example
 - User: "remove the file 'most-important-work.txt"
 - computer: "are you sure that you want to remove the file 'most-important-work.txt'?"
 - User: "yes"
 - Computer: "are you certain?"
 - User: "yes of course"
 - Computer: "the file 'most-important-work.txt' has been removed"
 - User: Oops, damm
- The user is not reconsidering the overall action it only prompts to think about the immediate action (clicking)
- A solution is to make the action reversible

Detecting Errors

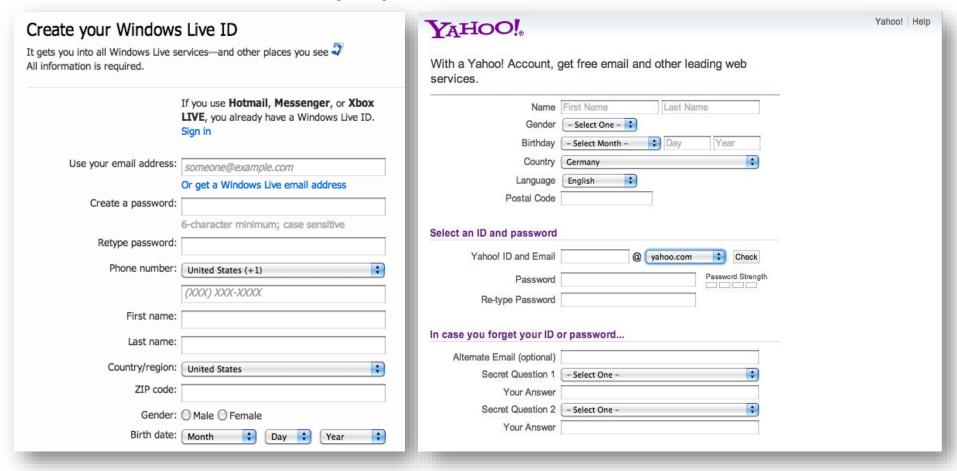

When "human" errors are detected get into a understandable dialog with the user

Forcing Function

- Interlock (e.g. functions can only be done in a certain order)
- Lock-Ins (e.g. you can not leave, before you have not done something)
- Lock-Outs (e.g. you can get in, before you have not done something)

Constraints to prevent errors

- Physical constraints
 - Basic physical limitations
- Semantic constraints
 - Assumption to create something meaningful
- Cultural constraints
 - Borders and context provided by cultural conventions
- Logical constraints
 - Restrictions due to reasoning
- Applying constraints is a design decision!
 - Practical way to realize the principle "prevent errors"


Sketching a Form

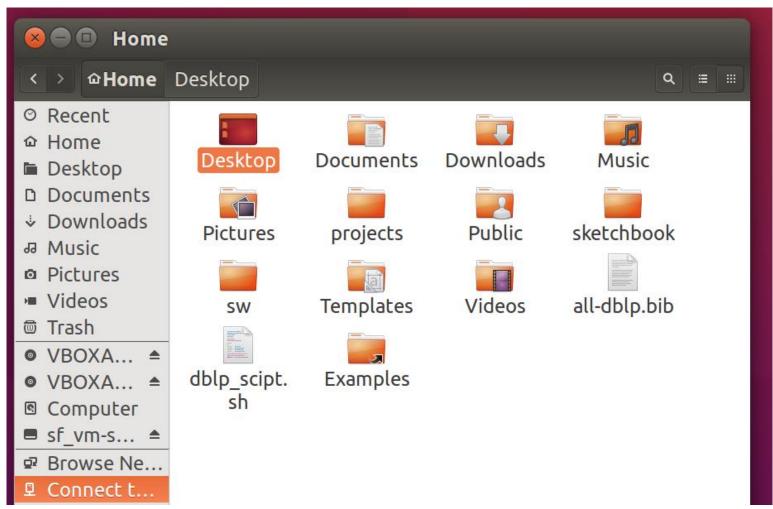
Mini-Exercise: Preventing Errors

- Design a Webform for inputting the following information:
 - Family Name, First Name
 - Country
 - Town, post code, street name and number
 - Email address
 - Gender
 - Birthday incl. year
 - Phone number
- What typical errors do you expect when people fill in the form?
- How to minimize the possibility of errors?
- How to minimize the effect of errors?

What errors do you expect?

Mini-Exercise: How would you prevent them?

Human Error 27 Albrecht Schmidt


What errors do you expect?

Mini-Exercise: How would you prevent them?

```
albrecht@albrecht-VirtualBox: ~/Desktop
GNU Wget 1.16.1, a non-interactive network retriever.
Usage: wget [OPTION]... [URL]...
Mandatory arguments to long options are mandatory for short options too.
Startup:
 -V, --version
                                  display the version of Wget and exit.
 -h. --help
                                  print this help.
 -b. --background
                                  go to background after startup.
                                  execute a `.wgetrc'-style command.
     --execute=COMMAND
Logging and input file:
  -o, --output-file=FILE
                                  log messages to FILE.
 -a, --append-output=FILE
                                  append messages to FILE.
 -d, --debug
                                  print lots of debugging information.
  -q, --quiet
                                  quiet (no output).
                                  be verbose (this is the default).
  -v. --verbose
                                  turn off verboseness, without being quiet.
  -nv, --no-verbose
      --report-speed=TYPE
                                  Output bandwidth as TYPE. TYPE can be bits.
  -i. --input-file=FILE
                                  download URLs found in local or external FILE
 -F, --force-html
                                  treat input file as HTML.
                                  resolves HTML input-file links (-i -F)
 -B. --base=URL
                                  relative to URL.
                                  Specify config file to use.
      --config=FILE
      --no-config
                                  Do not read any config file.
Download:
 -t, --tries=NUMBER
                                  set number of retries to NUMBER (0 unlimits).
      --retry-connrefused
                                  retry even if connection is refused.
 -0, --output-document=FILE
                                  write documents to FILE.
  -nc. --no-clobber
                                  skip downloads that would download to
                                  existing files (overwriting them).
```

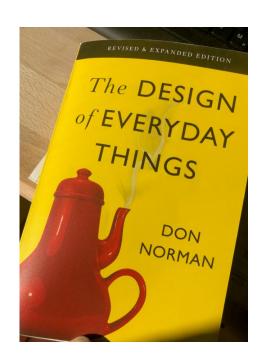
What errors do you expect?

Mini-Exercise: How would you prevent them?

Learning Goals

- Understand ...
 - When and how errors should be communicated
 - How human error and design are not independent
 - The difference between mistakes and slips
 - The concept of constraints and how they can help to reduce errors
- Be able to ...
 - explain the assumptions that are made about what errors users make
 - discuss different types of slips and give examples
 - Discuss how a user interface designs can be improved to prevent errors

Did you understand this block?


Can you answer these questions?

- When should you not communicate a system error to the user?
- Given a Webform discuss the statement "All possible errors will be made."
- Explain the difference between mistakes and slips
- What is a capture error? Give an example.
- What is a data driven error? Give an example.
- Explain physical constraints on the example of a Micro-USB and USB-C connector
- Explain the concept of constraints using the example of a Date-Picker
- Discuss how a user interface designs can be improved to prevent errors

Reference

- Norman, D. A. (2013). The design of everyday things: Revised and expanded edition. New York: Doubleday.
- Shneiderman, B., Plaisant, C., Cohen, M., Jacobs, S., Elmqvist, N., & Diakopoulos, N. (2016). Designing the user interface: strategies for effective human-computer interaction. Pearson. http://www.cs.umd.edu/hcil/DTUI6/

This file is licensed under the Creative Commons Attribution-Share Alike 4.0 (CC BY-SA) license:

https://creativecommons.org/licenses/by-sa/4.0

Attribution: Albrecht Schmidt

For more content see: https://hci-lecture.de

