

Design Space and Taxonomy

for Input Devices

Learning Goals

- Understand ...
 - The basic concept of an input device
 - The properties of input devices
 - How input devices can be classified
 - How human capabilities link to input devices
- Know
 - Examples for taxonomies for input device
 - A formal way of describing input devices

What is an Input Devices

Bill Buxton

"...basically, an input device is a transducer from the physical properties of the world into the logical parameters of an application."

http://www.billbuxton.com/input04.Taxonomies.pdf

Taxonomy

"a system for naming and organizing things, especially plants and animals, into groups that share similar qualities"¹

Having a taxonomy for input devices helps to reflect on their properties and helps to answer questions such as:

- What criteria are relevant when looking at input devices?
- How can we organize input devices?
- How to compare input devices?
- Can one input device be replaced by another input device?
- Which input devices is more expressive?

Taxonomy for Input Devices

Bill Buxton

- Criteria to assess input devices
 - continuous vs discrete?
 - agent of control (hand, foot, voice, eyes ...)?
- Dimensions in the Taxonomy
 - what is being sensed (position, motion or pressure), and
 - the number of dimensions being sensed (1, 2 or 3)
 - motor skills to operate (similar motor skills are in sub-columns)
 - touch vs. mechanical intermediary (directly touched vs devices that require a mechanical intermediary between the hand and the sensing mechanism (sub-rows))

http://www.billbuxton.com/input04.Taxonomies.pdf

Taxonomy for Input Devices

Bill Buxton

Buxton, W. (1983). Lexical and Pragmatic Considerations of Input Structures. Computer Graphics, 17 (1), 31-37. http://www.billbuxton.com/lexical.html http://www.billbuxton.com/input04.Taxonomies.pdf

Taxonomy for Input Devices

Bill Buxton

		Number of Dimensions							
			1			3			
Property Sensed	sition	Rotary Pot	Sliding Pot	Tablet & Puck	Tablet & Stylus	Light Pen	lsotonic Joystick	3D Joystick	, M
	Po:				Touch Tablet	Touch Screen			т
	otion	Continuous Rotary Pot	Treadmill	Mouse			Sprung Joystick Trackball	3D Trackball	м
	Σ		Ferinstat				X/Y Pad		т
	Pressure	Torque Sensor					lsometric Joystick		т
		rotary	linear	puck	stylus finger hoiz.	stylus finger vertical	small fixed location	small fixed with twist	

Buxton, W. (1983). Lexical and Pragmatic Considerations of Input Structures. Computer Graphics, 17 (1), 31-37. http://www.billbuxton.com/lexical.html http://www.billbuxton.com/input04.Taxonomies.pdf

Design Space and Taxonomy

7

	Linear	Rotary
Position		
Absolute	P (Position)	R (Rotation)
Relative	dP	dR
Force		
Absolute	F (Force)	T (Torque)
Relative	dF	dT

Card, S. K., Mackinlay, J. D. and Robertson, G. G. (1991). A Morphological Analysis of the Design Space of Input Devices. ACM Transactions on Information Systems 9(2 April): 99-122 https://dl.acm.org/doi/pdf/10.1145/123078.128726

		Linear		Rotary			
	X	Y	Z	rX	rY	rZ	
Р							R
dP							dR
F							Т
dF							dT
	1 10 100 inf						

Card, S. K., Mackinlay, J. D. and Robertson, G. G. (1991). A Morphological Analysis of the Design Space of Input Devices. ACM Transactions on Information Systems 9(2 April): 99-122 https://dl.acm.org/doi/pdf/10.1145/123078.128726

Design Space and Taxonomy

9

Example 1: Touch Screen

	Linear			Rotary			
	X	Y	Z	rX	rY	rZ	
Р	-						R
dP							dR
F							Т
dF							dT
	1 10 100 inf						

Card, S. K., Mackinlay, J. D. and Robertson, G. G. (1991). A Morphological Analysis of the Design Space of Input Devices. ACM Transactions on Information Systems 9(2 April): 99-122 https://dl.acm.org/doi/pdf/10.1145/123078.128726

Example 2: Mouse with 3 Buttons and scroll wheel

	Linear			Rotary			
	X	Y	Z	rX	rY	rZ	
Р			3				R
dP	-						dR
F							Т
dF							dT
	1 10 100 inf						

Card, S. K., Mackinlay, J. D. and Robertson, G. G. (1991). A Morphological Analysis of the Design Space of Input Devices. ACM Transactions on Information Systems 9(2 April): 99-122 https://dl.acm.org/doi/pdf/10.1145/123078.128726

11

Mini Exercise: mouse (2 buttons), keyboard with trackpad, joystick

		Linear		Rotary			
	X	Y	Z	rX	rY	rZ	
Р							R
dP							dR
F							Τ
dF							dT
	1 10 100 inf						

Card, S. K., Mackinlay, J. D. and Robertson, G. G. (1991). A Morphological Analysis of the Design Space of Input Devices. ACM Transactions on Information Systems 9(2 April): 99-122 https://dl.acm.org/doi/pdf/10.1145/123078.128726

Mini Exercise: Invent a device, that...

...allows simultaneous input of the size of rectangle, the orientation and its position on the screen

- What parameters do we need?
- How could such a device look like?

Card, S. K., Mackinlay, J. D. and Robertson, G. G. (1991). A Morphological Analysis of the Design Space of Input Devices. ACM Transactions on Information Systems 9(2 April): 99-122 https://dl.acm.org/doi/pdf/10.1145/123078.128726

A formal view

(M, In, S, R, Out, W)

- M is a manipulation operator,
- In is the input domain,
- **S** is the current state of the device,
- R is a resolution function mapping from the input domain set to the output domain set,
- Out is the output domain set, and
- W is a general-purpose set of device properties that describe additional aspects of how a device works

Card, S. K., Mackinlay, J. D. and Robertson, G. G. (1991). A Morphological Analysis of the Design Space of Input Devices. ACM Transactions on Information Systems 9(2 April): 99-122 https://dl.acm.org/doi/pdf/10.1145/123078.128726

A formal view

(M, In, S, R, Out, W)

- **M** is a manipulation operator,
- In is the input domain,
- S is the current state of the device,
- R is a resolution function mapping from the input domain set to the output domain set,
- Out is the output domain set, and

W is a general-purpose set of device properties that describe additional aspects of how a device works

Card, S. K., Mackinlay, J. D. and Robertson, G. G. (1991). A Morphological Analysis of the Design Space of Input Devices. ACM Transactions on Information Systems 9(2 April): 99-122 https://dl.acm.org/doi/pdf/10.1145/123078.128726

A formal view

(M, In, S, R, Out, W)

- **M** is a manipulation operator,
- In is the input domain,
- S is the current state of the device,
- R is a resolution function mapping from the input domain set to the output domain set,
- Out is the output domain set, and

Card, S. K., Mackinlay, J. D. and Robertson, G. G. (1991). A Morphological Analysis of the Design Space of Input Devices. ACM Transactions on Information Systems 9(2 April): 99-122 https://dl.acm.org/doi/pdf/10.1145/123078.128726

Design Space and Taxonomy

 W is a general-purpose set of device properties that describe additional aspects of how a device works

A formal view

(M, In, S, R, Out, W)

- **M** is a manipulation operator,
- In is the input domain,
- S is the current state of the device,
- R is a resolution function mapping from the input domain set to the output domain set,
- Out is the output domain set, and

W is a general-purpose set of device properties that describe additional aspects of how a device works

M:	
ln:	
S:	
R:	
Out:	
W:	
Application:	

Card, S. K., Mackinlay, J. D. and Robertson, G. G. (1991). A Morphological Analysis of the Design Space of Input Devices. ACM Transactions on Information Systems 9(2 April): 99-122 https://dl.acm.org/doi/pdf/10.1145/123078.128726

Design Space and Taxonomy

17

A formal view

(M, In, S, R, Out, W)

- **M** is a manipulation operator,
- In is the input domain,
- S is the current state of the device,
- R is a resolution function mapping from the input domain set to the output domain set,
- Out is the output domain set, and

 W is a general-purpose set of device properties that describe additional aspects of how a device works

Card, S. K., Mackinlay, J. D. and Robertson, G. G. (1991). A Morphological Analysis of the Design Space of Input Devices. ACM Transactions on Information Systems 9(2 April): 99-122 https://dl.acm.org/doi/pdf/10.1145/123078.128726

Which manipulation operator is useful?

Some controllers fit better than others

Example: mapping a rotary controller to linear movement

Foto by: casers jean (CC BY 2.0) https://www.flickr.com/photos/casers/125482678 Foto by: Etcha (CC BY-SA) https://commons.wikimedia.org/wiki/File:Taj_M ahal_drawing_on_an_Etch-A-Sketch.jpg

Effectiveness of Input Devices

Criteria to assess the effectiveness

- Pointing speed (device bandwidth)
- Pointing precision
- Errors
- Time to learn
- Time to grasp the device
- User preference
- Desk footprint
- Cost

Card, S. K., Mackinlay, J. D., & Robertson, G. G. (1990, March). The design space of input devices. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 117-124). https://www.cc.gatech.edu/classes/AY2009/cs4470_fall/readings/input-design-space.pdf

Design Space for Input Devices Card,91

- Footprint
 - Size of the devices on the desk
- Bandwidth
 - Human The bandwidth of the human muscle group to which the transducer is attached
 - Application the precision requirements of the task to be done with the device
 - Device the effective bandwidth of the input device

Card, S. K., Mackinlay, J. D. and Robertson, G. G. (1991). A Morphological Analysis of the Design Space of Input Devices. ACM Transactions on Information Systems 9(2 April): 99-122 https://dl.acm.org/doi/pdf/10.1145/123078.128726

Bandwidth/Throughput simplified

In bits/s [For more see models and Fitts' law]

- How difficult is it to click the highlighted field?
- How fast can you do it?

Bandwidth/Throughput simplified

In bits/s [For more see models and Fitts' law]

- Throughput is a composite measure
- Takes into account speed and accuracy

$$Throughput = \frac{ID}{MT}$$

 $ID = \log_2\left(\frac{D}{W} + 1\right)$

- ID is index of difficulty
- MT is movement time
- D is the distance from the current position to the target
- W represents the size (width) of the target

MacKenzie, I. S., Kauppinen, T., & Silfverberg, M. (2001, March). Accuracy measures for evaluating computer pointing devices. In *Proceedings of the SIGCHI conference on Human factors in computing systems* (pp. 9-16).

Movement time for Different Devices / Muscle Groups

Card,91

- Mouse easiest hard task: click on a character (mouse: 10.4 bits/s)
- It is easier to point with your finger (~25 bits/s)
- It is harder to point with your neck (~4.2 bits/s)

Card, S. K., Mackinlay, J. D. and Robertson, G. G. (1991). A Morphological Analysis of the Design Space of Input Devices. ACM Transactions on Information Systems 9(2 April): 99-122 https://dl.acm.org/doi/pdf/10.1145/123078.128726

Did you understand this block?

Can you answer these questions?

- How does Bill Buxton define an input device?
- According to which physical properties do Card et al. classify input devices?
- Draw a trackpoint into the classification of Card et al. How does it differ from a trackpad?
- How can you write the Edge A Sketch user interface in the tuple notification (M, In, S, R, Out, W)?
- Based on which criteria can you assess the effectiveness of an input device?

Reference

- Card, S. K., Mackinlay, J. D. and Robertson, G. G. (1991). A Morphological Analysis of the Design Space of Input Devices. ACM Transactions on Information Systems 9(2 April): 99-122 https://dl.acm.org/doi/pdf/10.1145/123078.128726
- Buxton, W. (1983). Lexical and Pragmatic Considerations of Input Structures. Computer Graphics, 17 (1), 31-37. http://www.billbuxton.com/lexical.html http://www.billbuxton.com/input04.Taxonomies.pdf
- Card, S. K., Mackinlay, J. D., & Robertson, G. G. (1990, March). The design space of input devices. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 117-124). https://www.cc.gatech.edu/classes/AY2009/cs4470_fall/readings/input-designspace.pdf
- MacKenzie, I. S., Kauppinen, T., & Silfverberg, M. (2001, March). Accuracy measures for evaluating computer pointing devices. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 9-16).

License

This file is licensed under the Creative Commons Attribution-Share Alike 4.0 (CC BY-SA) license:

https://creativecommons.org/licenses/by-sa/4.0

Attribution: Albrecht Schmidt

For more content see: https://hci-lecture.de

